Asymptotic behavior of Boussinesq system of KdV–KdV type

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Asymptotic Behavior of Boussinesq System of Kdv–kdv Type

This work deals with the local rapid exponential stabilization for a Boussinesq system of KdVKdV type introduced by J. Bona, M. Chen and J.-C. Saut. This is a model for the motion of small amplitude long waves on the surface of an ideal fluid. Here, we will consider the Boussinesq system of KdV-KdV type posed on a finite domain, with homogeneous Dirichlet–Neumann boundary controls acting at the...

متن کامل

Long-time Asymptotic Behavior of Two-dimensional Dissipative Boussinesq Systems

In this article, we consider the two-dimensional dissipative Boussinesq systems which model surface waves in three space dimensions. The long time asymptotics of the solutions for a large class of such systems are obtained rigorously for small initial data.

متن کامل

Long-time Asymptotic Behavior of Dissipative Boussinesq Systems

In this paper, we study various dissipative mechanics associated with the Boussinesq systems which model two-dimensional small amplitude long wavelength water waves. We will show that the decay rate for the damped one-directional model equations, such as the KdV and BBM equations, holds for some of the damped Boussinesq systems.

متن کامل

Asymptotic behavior of a system of two difference equations of exponential form

In this paper, we study the boundedness and persistence of the solutions, the global stability of the unique positive equilibrium point and the rate of convergence of a solution that converges to the equilibrium $E=(bar{x}, bar{y})$ of the system of two difference equations of exponential form: begin{equation*} x_{n+1}=dfrac{a+e^{-(bx_n+cy_n)}}{d+bx_n+cy_n}, y_{n+1}=dfrac{a+e^{-(by_n+cx_n)}}{d+...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Differential Equations

سال: 2018

ISSN: 0022-0396

DOI: 10.1016/j.jde.2018.04.034